Контрольная работа по физике №2. Электромагнетизм. Оптика. Элементы квантовой и ядерной физики.

Тексты задач обязательно должны присутствовать в контрольной работе. Рекомендуемый срок сдачи до 30 мая 2021 года.

Вопрос 1

Закон Ома для участка цепи.

Вопрос 2

Магнитное поле кругового проводника с током.

Вопрос 3

Самоиндукция.

Вопрос 4

Показатель преломления среды. (опр)

Вопрос 5

Полосы равной толщины.

Вопрос 6

Вращение плоскости поляризации.

Вопрос 7

Вольт-амперная характеристика вакуумного фотоэлемента.

Вопрос 8

Состав атомного ядра.

Вопрос 9

На рисунке изображены сечения трех прямолинейных бесконечно длинных проводников с токами. Расстояние l=6 см, токи $I_1=25$ A, $I_2=8$ A и $I_3=34$ A. Найти индукцию В магнитного поля в точке M.

Вопрос 10

Электрон, пройдя ускоряющую разность потенциалов U = 1,4 кВ, влетел в однородное магнитное поле, перпендикулярно силовым линиям. Радиус кривизны траектории электрона в магнитном поле R = 6,01 мм. Найти индукцию магнитного поля B.

Вопрос 11

Стержень длиной 17 см массой 11 г положили горизонтально на гладкую наклонную плоскость, составляющую с горизонтом угол, тангенс которого 0.2. Вся система находится в вертикальном магнитном поле индукцией 440 мТл. При какой силе тока в стержне он будет находиться в равновесии?

Вопрос 12

В однородном магнитном поле с индукцией B=1,2 Тл расположен проволочный виток таким образом, что его плоскость перпендикулярна линиям магнитной индукции. Виток замкнут на гальванометр. Какой заряд q пройдет через гальванометр при повороте витка на угол $\alpha=120^{\circ}$, если его площадь S=24 см 2 , а сопротивление витка вместе с гальванометром R=14 Ом?

Вопрос 13

На расстоянии 10 см от двояковыпуклой линзы, оптическая сила которой 8 дптр, поставлен перпендикулярно к оптической оси предмет высотой 28 см. Найти величину расстояния от линзы до изображения и высоту изображения.

Вопрос 14

Определить угол, под которым будет наблюдаться последний максимум дифракционной картины, полученной с помощью

дифракционной решетки периодом 1 мкм для нормального падения монохроматического света длиной волны 520 нм. Значение угла дать в градусах.

Вопрос 15

Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны $\lambda = 0.45$ мкм, падающим по нормали к поверхности пластинки. Наблюдение ведется в отраженном свете. Измерениями установлено, что радиус 8-го темного кольца (считая центральное темное пятно за нулевое) $r_8 = 0.428$ мм. Найти радиус кривизны линзы R.

Вопрос 16

Определить угол (в градусах) между главными плоскостями поляризатора и анализатора, если каждый из кристаллов отражает 12% падающего на него света. При этом интенсивность света, вышедшего из анализатора, составляет 11% интенсивности естественного света.

Вопрос 17

Определить максимальную скорость фотоэлектронов v_{max} , вырываемых с поверхности некоторого металла светом с частотой $\nu=12\cdot 10^{14}~\Gamma$ ц, если частота, соответствующая красной границе фотоэффекта для этого металла, $\nu_0=10,212\cdot 10^{14}~\Gamma$ ц.

Скорость света $c = 3 \cdot 10^8$ м/с; Постоянная Планка $h = 6.626 \cdot 10^{-34}$ Дж.·с; Заряд электрона $e = 1.6 \cdot 10^{-19}$ Кл; Масса электрона $m = 9.1 \cdot 10^{-31}$ кг.

Вопрос 18

Какую энергетическую светимость R имеет абсолютно черное тело, если максимум спектральной плотности его энергетической светимости приходится на длину волны $\lambda = 0,546$ мкм?

Вопрос 19

Определить удельную активность нуклида с атомной массой 166, если его период полураспада составляет 114 сут. (В поле ответа ввести величину, умноженную на 10^{-17})