Контрольная работа по физике №2. Электромагнетизм. Оптика. Элементы квантовой и ядерной физики.

Тексты задач обязательно должны присутствовать в контрольной работе. Рекомендуемый срок сдачи до 30 мая 2021 года.

Вопрос 1

Параллельное соединение проводников: соотношение сопротивлений, токов, напряжений.

Вопрос 2

Магнитный момент рамки с током.

Вопрос 3

Самоиндукция.

Вопрос 4

Построение изображения в собирающей линзе: предмет за двойным фокусом линзы.

Вопрос 5

Полосы равной толщины.

Вопрос 6

Дифракция на дифракционной решетке.

Вопрос 7

Закон Стефана-Больцмана.

Вопрос 8

Дефект массы атомного ядра.

Вопрос 9

На рисунке изображены сечения трех прямолинейных бесконечно длинных проводников с токами. Расстояние l=9 см, токи $I_1=14$ A, $I_2=37$ A и $I_3=14$ A. Найти индукцию В магнитного поля в точке M.

Вопрос 10

Каким импульсом должен обладать протон, чтобы в однородном магнитном поле напряженностью 71 А/м двигаться по дуге окружности радиусом 33 мм? В поле ответа ввести число, умноженное на 10^{25}

Вопрос 11

Горизонтально расположенный проводник длиной l=20 см и массой m=60 г находится в равновесии в однородном магнитном поле с индукцией B=0,3 Тл. Определите силу тока I в проводнике.

Вопрос 12

В однородном магнитном поле с индукцией B =2,5 Тл расположен проволочный виток таким образом, что его плоскость перпендикулярна линиям магнитной индукции. Виток замкнут на гальванометр. Какой заряд q пройдет через гальванометр при повороте витка на угол α =60°, если его площадь S =17 см², а сопротивление витка вместе с гальванометром R =27 Ом?

Вопрос 13

На расстоянии 22 см от двояковогнутой линзы, оптическая сила которой -2 дптр, поставлен перпендикулярно к оптической оси предмет высотой 11 см. Найти величину расстояния от линзы до изображения и высоту изображения.

Вопрос 14

На дифракционную решетку, содержащую $N_0 = 111$ штрихов на 1 мм, падает нормально монохроматический свет с длиной волны $\lambda = 0,60$ мкм. Определить угол дифракции φ , соответствующий 3-му максимуму.

Вопрос 15

Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны $\lambda = 0,43$ мкм, падающим по нормали к поверхности пластинки. Наблюдение ведется в проходящем свете. Измерениями установлено, что радиус 1-го темного кольца (считая центральное темное пятно за нулевое) $r_1 = 0,11$ мм. Найти радиус кривизны линзы R.

Вопрос 16

Естественный свет проходит через поляризатор и анализатор, плоскости которых располагаются под углом 64° друг к другу. При этом в каждом из кристаллов отражается 14% падающего на него света. Определить, какая доля интенсивности естественного света (%) будет наблюдаться на выходе из анализатора.

Вопрос 17

Определить длину волны λ излучения (нм), падающего на поверхность некоторого металла, если максимальная скорость фотоэлектронов $v_{max}=0,36\cdot 10^6\,$ м/с. Длина волны, соответствующая красной границе фотоэффекта для этого металла, $\lambda_0=270\,$ нм .

Скорость света $c = 3 \cdot 10^8$ м/с; Постоянная Планка $h = 6.626 \cdot 10^{-34}$ Дж·с; Заряд электрона $e = 1.6 \cdot 10^{-19}$ Кл; Масса электрона $m = 9.1 \cdot 10^{-31}$ кг.

Вопрос 18

Какую энергетическую светимость R имеет абсолютно черное тело, если максимум спектральной плотности его энергетической светимости приходится на длину волны $\lambda = 0,678$ мкм?

Вопрос 19

Период полураспада радиоактивного изотопа составляет T = 56 суг. Определить время (суг), в течение которого распадется $\frac{1}{9}$ часть начального количества ядер.