Контрольная работа по физике №2. Электромагнетизм. Оптика. Элементы квантовой и ядерной физики. Тексты задач обязательно должны присутствовать в контрольной работе. Рекомендуемый срок сдачи до 30 мая 2021 года. Вопрос 1

zonpov s

Закон Ома для участка цепи.

Вопрос 2

Взаимодействие параллельных проводников с током.

Вопрос 3

Вращение рамки в магнитном поле.

Вопрос 4

Закон преломления.

Вопрос 5

Когерентные волны.

Вопрос 6

Закон Малюса.

Вопрос 7

Фотон. Энергия фотона.

Вопрос 8

Опыт Резерфорда.

Вопрос 9

На рисунке изображены сечения трех прямолинейных бесконечно длинных проводников с токами. Расстояние l=10 см, токи $I_1=32$ A, $I_2=34$ A и $I_3=34$ A. Найти индукцию B магнитного поля в точке M.

Вопрос 10

Определить, с какой угловой скоростью двигается по окружности заряд 26 нКл массой $26 \cdot 10^{-20}$ кг, влетевший в перпендикулярное магнитное поле напряженностью 270 А/м.

Вопрос 11

Прямой проводник длиной 15 см располагается горизонтально и перпендикулярно линиям магнитного поля с индукцией 2.6 мТл так, что сила тяжести уравновешивается магнитной силой. Напряжение на концах проводника 70 В, его удельное сопротивление $17 \cdot 10^{-6}$ Ом · м. Чему равна плотность материала этого проводника?

Вопрос 12

В однородном магнитном поле с индукцией B=1,7 Тл расположен проволочный виток таким образом, что его плоскость перпендикулярна линиям магнитной индукции. Виток замкнут на гальванометр. Какой заряд q пройдет через гальванометр при повороте витка на угол $\alpha=150^{\circ}$, если его площадь S=12 см 2 , а сопротивление витка вместе с гальванометром R=13 Ом?

Вопрос 13

Определить радиус кривизны поверхности плосковыпуклой линзы, имеющей оптическую силу 4 дптр. Показатель преломления материала линзы равен 1,3. Найти, на каком расстоянии следует расположить эту линзу от предмета, чтобы получить сфокусированное изображение на экране, отстоящем от предмета на 1,7м.

Вопрос 14

На дифракционную решетку с периодом d=11 мкм, падает нормально монохроматический свет с длиной волны $\lambda=0,47$ мкм. Определить угол дифракции φ , соответствующий 2-му максимуму.

Вопрос 15

Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны $\lambda=0,43$ мкм, падающим по нормали к поверхности пластинки. Наблюдение ведется в проходящем свете. Радиус кривизны линзы R=2,0 см. Найти радиус 1-го темного кольца (считая центральное темное пятно за нулевое) r_1 .

Вопрос 16

Естественный свет падает на четыре последовательно расположенные поляризатора, плоскость поляризации каждого из которых повернута под углом 10° к плоскости предыдущего. Определить, какую долю (%) от начальной будет составлять интенсивность на выходе из четвёртого кристалла.

Вопрос 17

При каком обратном напряжении будет полностью останавливаться фототок, если работа выхода электрона из металла составляет 1,2 эВ, а длина волны падающих фотонов 893 нм?

Скорость света $c = 3 \cdot 10^8$ м/с; Постоянная Планка $h = 6.63 \cdot 10^{-34}$ Дж·с; Заряд электрона $e = 1.6 \cdot 10^{-19}$ Кл; Масса электрона $m = 9.1 \cdot 10^{-31}$ кг.

Вопрос 18

Определить энергию, излучаемую за 6 минут с 5см² абсолютно черного тела, имеющего температуру 48° С.

Вопрос 19

Определить период полураспада радиоактивного изотопа, если спустя t=898 с осталась $\frac{1}{5}$ часть начального количества ядер.