Контрольная работа по физике №2. Электромагнетизм. Оптика. Элементы квантовой и ядерной физики.

Тексты задач обязательно должны присутствовать в контрольной работе. Рекомендуемый срок сдачи до 30 мая 2021 года.

Вопрос 1

Закон Ома для замкнутой цепи.

Вопрос 2

Закон Био-Савара-Лапласа

Вопрос 3

Теорема Остроградского-Гаусса для магнитного поля в вакууме

Вопрос 4

Закон независимости световых пучков.

Вопрос 5

Опыт Юнга.

Вопрос 6

Вращение плоскости поляризации.

Вопрос 7

Эффект Комптона.

Вопрос 8

Модель атома Резерфорда.

Вопрос 9

На рисунке изображены сечения трех прямолинейных бесконечно длинных проводников с токами. Расстояние l =4 см, токи I_1 =17 A, I_2 =30 A и I_3 =6 A. Найти индукцию В магнитного поля в точке M.

Вопрос 10

Заряд 11 нКл массой $1\cdot 10^{-18}$ кг, ускоренный разностью потенциалов 8900 В, влетает в однородное магнитное поле индукцией 20 мТл перпендикулярно силовым линиям. Определить радиус кривизны траектории данного заряда.

Вопрос 11

Стержень длиной 16 см массой 11 г положили горизонтально на гладкую наклонную плоскость, составляющую с горизонтом угол, тангенс которого 0.35. Вся система находится в вертикальном магнитном поле индукцией 240 мТл. При какой силе тока в стержне он будет находиться в равновесии?

Вопрос 12

Магнитный поток, пронизывающий каждый виток катушки, расположенной в магнитном поле, составляет 69.5 мВб. Поле выключают в течение 0.24 с, при этом в катушке индуцируется средняя ЭДС 22 В. Сколько витков имеет катушка?

Вопрос 13

Определить, на каком расстоянии (см) от линзы будет находиться изображение предмета, расположенного в 68 см от вогнутовыпуклой собирающей линзы с радиусами кривизны поверхности 24 и 19 см, изготовленной из вещества с показателем преломления 1.2. Расстояние указать отрицательным в случае мнимого изображения.

Вопрос 14

На дифракционную решетку периодом 40 мкм нормально падает белый свет. Определить ширину 4-го спектра на экране, отстоящем от

решетки на 5 м.

Вопрос 15

Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны $\lambda=0,43$ мкм, падающим по нормали к поверхности пластинки. Наблюдение ведется в проходящем свете. Радиус кривизны линзы R=7,8 см. Найти радиус 1-го светлого кольца r_1 .

Вопрос 16

Под каким углом (в градусах) должен падать естественный свет на вещество с показателем преломления 1,28, чтобы отраженный луч оказался полностью поляризованным?

Вопрос 17

Определить длину волны λ излучения (нм), падающего на поверхность некоторого металла, если максимальная скорость фотоэлектронов $v_{max}=0,36\cdot 10^6\,$ м/с. Длина волны, соответствующая красной границе фотоэффекта для этого металла, $\lambda_0=270\,$ нм .

Скорость света $c=3\cdot 10^8$ м/с; Постоянная Планка $h=6.626\cdot 10^{-34}$ Дж·с; Заряд электрона $e=1.6\cdot 10^{-19}$ Кл; Масса электрона $m=9.1\cdot 10^{-31}$ кг.

Вопрос 18

Определить энергию, излучаемую за 4 минут с 8см² абсолютно черного тела, имеющего температуру 180° С.

Вопрос 19

Определить период полураспада радиоактивного изотопа, если спустя t=898 с распалась $\frac{1}{5}$ часть начального количества ядер.