Контрольная работа по физике №2. Электромагнетизм. Оптика. Элементы квантовой и ядерной физики. Тексты задач обязательно должны присутствовать в контрольной работе. Рекомендуемый срок сдачи до 30 мая 2021 года. Вопрос 1

Мощность электрического тока (формулы с пояснением величин).

Вопрос 2

Закон Био-Савара-Лапласа

Вопрос 3

Правило Ленца.

Вопрос 4

Построение изображения в собирающей линзе: предмет между фокусом и двойным фокусом.

Вопрос 5

Применение интерференции света.

Вопрос 6

Зоны Френеля.

Вопрос 7

Закон Вина.

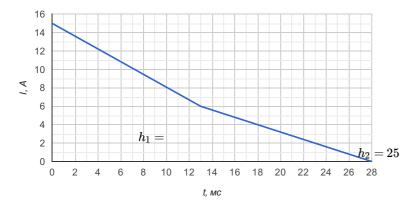
Вопрос 8

Энергия связи атомного ядра.

Вопрос 9

На рисунке изображены сечения трех прямолинейных бесконечно длинных проводников с токами. Расстояние l=7 см, токи $I_1=28~{\rm A},$ $I_2 = 32 \; \text{A}$ и $I_3 = 25 \; \text{A}$. Найти индукцию В магнитного поля в точке M.

Вопрос 10


Протон, пройдя ускоряющую разность потенциалов U = 1.9 кВ, влетел в однородное магнитное поле, перпендикулярно силовым линиям. Индукция магнитного поля B = 203 мТл. Найти радиус кривизны траектории R протона в магнитном поле.

Вопрос 11

Стержень длиной 7 см массой 22 г положили горизонтально на гладкую наклонную плоскость, составляющую с горизонтом угол, тангенс которого 0.45. Вся система находится в вертикальном магнитном поле индукцией 390 мТл. При какой силе тока в стержне он будет находиться в равновесии?

Вопрос 12

На рисунке приведен график зависимости силы ток в катушке от времени (мс). Определить индуктивность катушки, если в момент времени *t*=4 мс в ней возникает ЭДС самоиндукции 5 В.

, находящаяся на расстоянии $a_2 = 0.2$ м от экрана,

На дифракционную решетку с периодом d=19 мкм, падает нормально монохроматический свет с длиной волны $\lambda=0.50$ мкм. Определить угол дифракции φ , соответствующий 4-му максимуму.

Вопрос 15

Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны λ =0,59 мкм, падающим по нормали к поверхности пластинки. Наблюдение ведется в отраженном свете. Радиус кривизны линзы R =7,6 см. Найти радиус 6-го светлого кольца r_6 .

Вопрос 16

Естественный свет падает на четыре последовательно расположенные поляризатора, плоскость поляризации каждого из которых повернута под углом 22° к плоскости предыдущего. Определить, какую долю (%) от начальной будет составлять интенсивность на выходе из четвёртого кристалла.

Вопрос 17

Определить длину волны λ излучения (нм), падающего на поверхность некоторого металла, если максимальная скорость фотоэлектронов $v_{max}=0,3\cdot 10^6$ м/с. Длина волны, соответствующая красной границе фотоэффекта для этого металла, $\lambda_0=436$ нм .

Скорость света $c=3\cdot 10^8$ м/с; Постоянная Планка $h=6.626\cdot 10^{-34}$ Дж·с; Заряд электрона $e=1.6\cdot 10^{-19}$ Кл; Масса электрона $m=9.1\cdot 10^{-31}$ кг.

Вопрос 18

Определить, на сколько градусов было нагрето абсолютно черное тело, если длина волны, на которую приходится максимум излучательной способности данного тела, изменилась с 1,556 мкм до 0,94916 мкм.

Вопрос 19

Определить активность 8 г изотопа с атомной массой 211 а.е.м., если его период полураспада составляет 184 сут. (В поле ответа ввести величину активности (Бк), умноженную на 10^{-15})