Контрольная работа по физике №2. Электромагнетизм. Оптика. Элементы квантовой и ядерной физики. Тексты задач обязательно должны присутствовать в контрольной работе. Рекомендуемый срок сдачи до 30 мая 2021 года.

Вопрос 1

Последовательное соединение проводников: соотношение сопротивлений, токов, напряжений.

Вопрос 2

Напряженность магнитного поля.

Вопрос 3

Индуктивность контура.

Вопрос 4

Полное внутреннее отражение.

Вопрос 5

Условия минимума и максимума интерференции.

Вопрос 6

Закон Малюса.

Вопрос 7

Абсолютно черное тело.

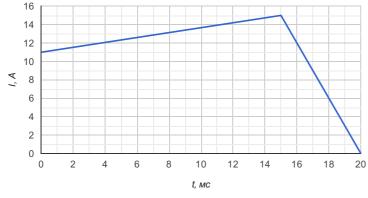
Вопрос 8

Состав атомного ядра.

Вопрос 9

На рисунке изображены сечения трех прямолинейных бесконечно длинных проводников с токами. Расстояние l=8 см, токи $I_1=31$ A, $I_2=21$ A и $I_3=23$ A. Найти индукцию В магнитного поля в точке M.

Вопрос 10


Определить кинетическую заряда 37 нКл массой $8\cdot 10^{-15}$ кг, влетевшего перпендикулярно в магнитное поле 15 мТл и двигающегося в этом поле по окружности радиусом 29 мм. В поле ответа ввести число, умноженное на 10^{10} .

Вопрос 11

Стержень длиной 17 см массой 14 г положили горизонтально на гладкую наклонную плоскость, составляющую с горизонтом угол, тангенс которого 0.15. Вся система находится в вертикальном магнитном поле индукцией 120 мТл. При какой силе тока в стержне он будет находиться в равновесии?

Вопрос 12

На рисунке приведен график зависимости силы ток в катушке от времени (мс). Определить индуктивность катушки, если в момент времени *t*=4 мс в ней возникает ЭДС самоиндукции 14 В.

влен перпендикулярно к оптической оси предмет жения.

ъ ширину 4-го спектра на экране, отстоящем от

Вопрос 15

Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Радиус кривизны линзы R=8,0 см. Наблюдение ведется в отраженном свете. Измерениями установлено, что радиус 5-го темного кольца (считая центральное темное пятно за нулевое) $r_5=0,46$ мм. Найти длину волны λ падающего света (мкм).

Вопрос 16

Определить угол (в градусах) между главными плоскостями поляризатора и анализатора, если каждый из кристаллов отражает 19% падающего на него света. При этом интенсивность света, вышедшего из анализатора, составляет 16% интенсивности естественного света.

Вопрос 17

При каком обратном напряжении будет полностью останавливаться фототок, если работа выхода электрона из металла составляет 4,3 эВ, а частота падающих фотонов $13179 \cdot 10^{11} \cdot 10^{11} \, \Gamma_{\rm H}$?

Скорость света $c=3\cdot 10^8$ $_c=3\cdot 10^8$ м/с; Постоянная Планка $h=6.63\cdot 10^{-34}$ $h=6.626\cdot 10^{-34}$ Дж.·с; Заряд электрона $e=1.6\cdot 10^{-19}$ $e=1.6\cdot 10^{-19}$ Кл; Масса электрона $m=9.1\cdot 10^{-31}$ $m=9.1\cdot 10^{-31}$ кг.

Вопрос 18

Какую температуру (° C) имеет абсолютно черное тело, если мощность излучения с 3 см² его поверхности составляет 37Bт?

Вопрос 19

Найти, во сколько раз начальное количество ядер радиоактивного изотопа уменьшится за 6 лет, если за один год оно уменьшилось в 4 раза.