Контрольная работа по физике №2. Электромагнетизм. Оптика. Элементы квантовой и ядерной физики.

Тексты задач обязательно должны присутствовать в контрольной работе. Рекомендуемый срок сдачи до 30 мая 2021 года.

Вопрос 1

КПД источника в цепи постоянного тока (формула с пояснением величин).

Вопрос 2

Движение заряда по окружности в магнитном поле.

Вопрос 3

Правило Ленца.

Вопрос 4

Закон отражения.

Вопрос 5

Условия минимума и максимума интерференции.

Вопрос 6

Вращение плоскости поляризации.

Вопрос 7

Устройство и принцип действия вакуумного фотоэлемента.

Вопрос 8

Дефект массы атомного ядра.

Вопрос 9

На рисунке изображены сечения трех прямолинейных бесконечно длинных проводников с токами. Расстояние l=9 см, токи $I_1=33$ A, $I_2=6$ A и $I_3=18$ A. Найти индукцию В магнитного поля в точке M.

Вопрос 10

Определить, с какой угловой скоростью двигается по окружности заряд 38 нКл массой $38 \cdot 10^{-20}$ кг, влетевший в перпендикулярное магнитное поле напряженностью 230 А/м.

Вопрос 11

Стержень длиной 10 см массой 23 г положили горизонтально на гладкую наклонную плоскость, составляющую с горизонтом угол, тангенс которого 0.15. Вся система находится в вертикальном магнитном поле индукцией 410 мТл. При какой силе тока в стержне он будет находиться в равновесии?

Вопрос 12

Проводник длиной l=1,9 м движется со скоростью v=13 м/с перпендикулярно линиям индукции однородного магнитного поля. Определите величину индукции магнитного поля B, если на концах проводника возникает разность потенциалов U=35 В.

Вопрос 13

Определить радиус кривизны поверхности плосковыпуклой линзы, имеющей оптическую силу 4 дптр. Показатель преломления материала линзы равен 1,7. Найти, на каком расстоянии следует расположить эту линзу от предмета, чтобы получить сфокусированное изображение на экране, отстоящем от предмета на 1,2м.

Вопрос 14

Определить, на какую длину волны (нм) в спектре 3-го порядка, полученного с помощью дифракционной решетки, накладывается линия

456 нм в спектре 4-го порядка.

Вопрос 15

Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны $\lambda = 0,64$ мкм, падающим по нормали к поверхности пластинки. Наблюдение ведется в отраженном свете. Радиус кривизны линзы R = 6,4 см. Найти радиус 6-го темного кольца (считая центральное темное пятно за нулевое) .

Вопрос 16

Под каким углом (в градусах) к границе раздела сред должен падать естественный свет на вещество с показателем преломления 1,37, чтобы отраженный луч оказался полностью поляризованным?

Вопрос 17

Определить частоту ν излучения, падающего на поверхность некоторого металла, если максимальная скорость фотоэлектронов $v_{max}=0,46\cdot 10^6\,$ м/с. Частота, соответствующая красной границе фотоэффекта для этого металла, $\nu_0=7\cdot 10^{14}\,$ Гц. (В поле ответа ввести значение частоты в Гц, поделенное на $10^{14}\,$.

Скорость света $c=3\cdot 10^8$ м/с; Постоянная Планка $h=6.626\cdot 10^{-34}$ Дж.·с; Заряд электрона $e=1.6\cdot 10^{-19}$ Кл; Масса электрона $m=9.1\cdot 10^{-31}$ кг.

Вопрос 18

Какую температуру (°С) имеет абсолютно черное тело, если мощность излучения с 9 см² его поверхности составляет 29Вт?

Вопрос 19

Найти, во сколько раз начальное количество ядер радиоактивного изотопа уменьшится за 5 лет, если за один год оно уменьшилось в 3 раза.